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Executive Summary

We humans want chemicals to do things, but we don’t know what molecules will induce those re-

sponses. For instance, we want disease-curing drugs, e!cient solar cell materials, carbon-capturing

compounds, biodegrading polymers, and so on, but what do those chemicals look like? And even

if we could imagine what to make, how do we make them?

In the early 2020s, researchers at MIT took a leap forward to solving those problems: a platform

for semi-autonomous molecular discovery. This technology proposes molecules, using property

prediction models to assess each chemical candidate. These candidates are then synthesized using

a robotic lab, and tested using onboard analytical chemical tools. These measurements are then

used to update the property prediction models. This process is repeated iteratively, exploring new

areas of chemical space and becoming more e”ective with each run. After several cycles, the tool

has learned from its exploratory runs, and is used to generate compounds that are highly stable

and red-absorbing. The human involvement was small, limited to just “setting and adjusting

objectives, providing requested materials, and occasionally fixing unrecoverable errors” [1]. In

other words, this platform could almost autonomously invent molecules that do useful things.

Although that technology is real, its full potential has not yet been actualized. In the fictional

history presented in this story, society catches up. Autonomous molecular discovery platforms are

used for the first time to autonomously propose and synthesize an e”ective cancer-treating drug.

In addition to working well for biochemical targets, the technology shows promise that this can

be applied to other domains, like for developing sustainable materials and renewable energies.

But flip this formula on its head, and something tragic happens. Predictive models work by

finding optima - optimally stable, optimally e!cacious, optimally good. But what if you wanted

the opposite? Optimally toxic, optimally explosive, optimally harmful. Is this a real threat? Do

the downsides outweigh the positives? These are questions we must consider as a society as we

advance toward the future of chemical automation.
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1 The Hierophant

They had finally done it. Or so they had said, so many times, for so many years; but it seemed like

it was really true this time. A chemical breakthrough. An innovation in AI. Familiar words ring

from the stage. I’ve heard these words so many times throughout my career as a researcher - usually

well-intentioned words, but overstatements nonetheless. At this press conference, something in

the air tells me that the situation’s quite di”erent.

A team of young men and women in lab coats stands by a news podium. A white-haired woman

with sunken eyes and a creased smile is gesturing vivaciously toward a crowd of press reporters. She

speaks of automation, innovation, revolution, determinations: all sorts of -ations, before landing

on the word “verdenir.” A new drug. She points to a bar chart on the screen behind her, and

explains that the small molecule had just been approved by the FDA, having passed through an

extremely successful round of clinical trials in which the drug eliminated cancerous tumors caused

by a certain genetic mutation. Nobody is in doubt when she says that verdenir is poised to save

countless lives and curb immeasurable su”ering.

A new cancer cure, especially one specific to a single form of the disease, wasn’t revolutionary

in itself, she goes on to explain. After all, over a decade prior, in 2018, larotrectinib had been

approved by the FDA for essentially the same application - tumor-agnostic treatment caused by

mutations in NTRK genes [2]. The patient had to have that specific type of cancer for it to

work, but if they did, then larotrectinib was potentially life-saving. This was followed up by

repotrectinib, which was approved by the FDA in 2023 for targeting cancer caused by NTRK

gene fusions [3]. A smattering of other similar drugs followed, the most recent of which was just

approved in 2030.

It wasn’t the mechanism of this new molecule verdenir that made the headlines, but rather,

how the drug itself was discovered. It was found using a fully-autonomous discovery platform, the

woman explains. And this platform had the potential to revolutionize the entire way we develop

medicine - and beyond this, how we discover novel materials.

There is an air of tense excitement as she makes this last declaration. She pauses, and then

explains:

The process of discovering new drugs is a very expensive endeavor: from lab to market, it can

cost billions of dollars and take about a decade of work [4]. Traditional drug discovery involves

identifying the cause of a disease, proposing numerous drug candidates, and then making and
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testing them to see if they “hit” the biochemical target that is linked to the disease. Successful

candidates at this stage are then exhaustively studied to understand their mode of action and

physicochemical properties, formulated, analyzed, and potentially tested on a small number of

animals. This preclinical stage is expensive, often costing many millions of dollars [5]. But the

most expensive and risky stage is when the drugs are tested on people in clinical trials. Indeed,

about 90% of drugs fail clinical trials [6], about half of which is due to lack of e!cacy [7]. At any

point, the drug can be deemed unfit, undoing the entire preceding chain of events. Having a good

list of drug candidates to start with would save huge amounts of time, vitality, and money across

all of these stages.

The goal of the autonomous drug discovery platform is to find the top few candidate drugs

computationally, reducing the expenses in pursuing suboptimal drug candidates while maximizing

the chance of drug feasibility. To do so, it used a so-called design-make-test-analyze (DMTA) cycle

that employed numerous di”erent applications of artificial intelligence.

First, the platform generates candidate compounds, using algorithms that estimate pharma-

cological and chemical properties deemed relevant to a drug, such as solubility, toxicity, and

synthesizability. By using chemical property predictors, which are data and physics-driven mod-

els that predict the relevant properties of each compound, the platform identifies the chemicals

that it can predict with the least confidence. This subset of compounds is then synthesized and

analyzed in a robot lab, and tested against the biomarkers. These tests are used to update the AI

models, improving both the property predictors as well as the platform’s understanding of what

makes a good drug candidate. This means that the model becomes increasingly accurate with

each subsequent cycle, exploring new areas of chemical space. After numerous calibration steps,

the platform is used to generate a list of molecules with optimal predicted drug properties. This,

apparently, had led to a batch of molecules of which several passed to human trials, including

verdenir.

It was odd that the technology had worked so well. The property predictors were refined only

in an artificial setting, using a robot lab which could only measure proxies for toxicity and drug

distribution in the body (which were impossible to ethically study in a robot lab setup, and so

an artificial approximation had to su!ce). These may improve the pre-clinical process, but there

was still no guarantee that the platform would improve the drug development process holistically.

But the technology, through many cycles of training, had still apparently learned higher-order

information about biochemistry that led to higher success rates in the downstream clinical trials.
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I sit back and think - this wasn’t anything especially new. When I was a grad student at MIT,

my coworkers had used this very same process to iteratively create dye molecules [1]. Autonomous,

multiproperty-driven molecular discovery: From predictions to measurements and back. Their

study didn’t lead to the discovery of a revolutionary new material, but it did demonstrate that

even as of 2023 that this self-improving cyclical procedure could one day be useful.

In fact, all of those individual components were actively studied in the early 2020s at MIT.

Methods for selecting synthesis routes based on tailorable objectives (synthesizability, safety, cost)

were developed, such as through the ASKCOS project [8]. Numerous models for predicting chem-

ical properties were also developed or spearheaded at MIT, including the message-passing neural

network architecture [9]. Similar story, too, with the autonomous chemistry lab [10, 11]. But

years of refinement and innovation had finally made autonomous labs real.

Graduate school was many years in the past now. Though a practitioner of computational

chemistry, I had been deeply skeptical of the hype of AI for chemistry for years. I had known

that issues in data quality and availability severely hampered the ability of models to learn pat-

terns in chemistry, with huge challenges in extrapolating to data-poor regions of chemical space,

which unfortunately tended to harbor the most interesting kinds of molecules. Making matters

worse, chemical literature contained pervasive issues in data curation often from combining data-

sets measured under di”erent conditions or standards, leading to inconsistent data and thereby

inconsistent predictions [12–14].

It was not at all guaranteed that generative AI would work for chemistry. One big issue is that

we simply don’t have enough scientific knowledge about the world of “chemical space”. Even with

high-throughput data generation, we will never come close to the amount of sheer data available for

models in natural language processing and computer vision. State-of-the-art transformer models

in the early 2020s were pre-trained on hundreds of billions of tokens (→ 1011), whereas the number

of available experimental data is typically no more than 106 and often is much smaller (→ 104),

and many datapoints might even be redundant due to high molecular similarity. As another point

of comparison, the number of possible drug-like compounds is popularly estimated to lie between

1023 to 10180. At the same time, chemical representation is not trivial either. Compounds are often

represented as graphs, which for machine learning purposes can be encoded in vectors. But because

chemical space is huge, with variations on the elements, formal charge, bond orders, connections,

aromaticity, stereochemistry, and varying permutations of such properties, these vectors typically

need to be quite big, and hence quite reliant on large quantities of data to be useful.
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During graduate school, I had thought that perhaps data mining would be able to extract more

information from “locked” compilations of chemical data, perhaps lending just enough additional

data for us to make useful chemical models. Although those advances did lead to modest model

improvements, they didn’t lead to any revolutionary advancements that really impacted people.

It would take something more clever.

Now, as I watch this woman vividly describe her successful chemical discovery platform, I can’t

help but finally feel some optimism at the future of AI in chemistry. An autonomous discovery

platform would allow itself to explore chemical space, gather data, and iteratively improve. It

addresses the fundamental problems of data-driven methods. Previously, models were trained

only on compounds whose experimental data were available, usually because those compounds

were already deemed interesting for some purpose, or were easy to synthesize or readily available

to buy. This biases and limits the chemical space to chemicals we already know about, rather than

the remarkable chemicals that we’re trying to find. The ability of the robot platform to synthesize

compounds, analyze them, and update its predictors combats this issue of poor extrapolation.

Also, because the measurements are systematic (i.e., from the same device), they avoid the issues

of data mismatch that are so pervasive.

Generalizable to any task, an automated chemical discovery workflow could be applied not just

to pharmaceuticals, but also to advancements in nanotechnology, environmental science, renewable

energy, sustainable materials, biochemistry, and so much more.

But at the same time, it could open Pandora’s box.

2 The Chariot

It isn’t even a week after this news briefing that I start seeing the commentary in the news.

I strap on my Conec-Set and check my feed: a scowling senator stares eagle-eyed into the cam-

era. “How long before they use this technology to make a deadly neurotoxin? Or a nuclear bomb?”

On another TV channel, a commentator says that we need to invest more into the technology be-

fore we fall behind to foreign competitors. Another commentator at his table agrees: apparently

we’ve already fallen behind. A CEO of a biotech company is arguing that the autonomous lab is

an existential threat to our future and to our jobs. Another CEO says it’s the most important

invention in recent years. The headset knows I want to log o” before I even tell it to, and it shuts

o” automatically. I move to turn the TV o” but it turns o” by itself as well. Technology’s ad-

vanced so much recently. Maybe too much! I think about those electrons coursing through a little

4



slab of silicon, churning in some fusion-powered server megafarm, representing bits of zeroes and

ones, which then assemble into larger-scale computer outputs and finally, information. That this

process will continue is the only thing guaranteed; the details are left to us. What information,

exactly? Information for how to create? Or to destroy? Or just nonsense - raw manifestations

of entropy? I think about the recent generative AI wave: the natural language revolution of the

early 20s, the realistic fake videos in the mid-late 20s. Many good things came about, but many

people were also misled, scammed, and hurt from these as well. Some lost their lives [15]. But

technology carried on.

Now, here we are crafting AI tools for chemistry. This isn’t funny videos and fake screenshots

anymore. Anything that involves chemicals is real, substantive, and will a”ect humans in some

way. I realize at this moment that AI-driven chemical technologies, in the wrong hands, could

actually make the world worse. If a model can find something that cures the most, couldn’t you

invert the problem and predict what cures the least (finding the minimum of some reward function

rather than the maximum)? The least safe molecule - that’s the world’s most dangerous chemical.

So, then, couldn’t someone use this same process to make a bomb? Or a deadly neurotoxin?

People have been working on making such threats for centuries. In fact, though I’m not an

expert whatsoever in dangerous weapons, I realize that there are already many, many types of

dangerous weapons that people could have already built even without computer-aided assistance,

probably far more accessible than we would like to think.

Learnings from autonomous labs could extend this, as they could be used to teach someone

how to make chemical weapons from easily-accessible consumer goods, which are harder to track

and thwart ahead of time. If someone is so determined to harm others as to go to these lengths,

couldn’t such models push the needle? Something being just a little easier to do might just make

it more likely to happen. It gives me pause.

More than ever, I realize we (collective we, meaning the whole world) need to discuss the risks,

or at least start thinking of safeguards and international guidelines to prevent dangerous misuse.

Realistically, such tools would likely be used by state entities to produce applications for warfare,

in which case any regulations are really hard to enforce. Could policy alone solve anything? Thus,

we would need to develop new technology to combat new chemical weapons discovered by AI, not

just policy decisions - and Pandora’s box is thereby opened. The nuclear bomb nearly brought the

world to extinction during the Cold War. Something just as dangerous could happen once more.

I keep these thoughts in mind - the benefits, the risks, and the unrealized solutions. I’m not
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sure what to think until a few years later.

3 The Hermit

The verdenir team has won a Greene Prize for AI Advancements in Health. I happen to be tuned

into my Connec-Set so I step into the stream and watch: it’s the same team, now a few years

older, a bit more tired, but still confident, still proud.

The woman from the first press conference - I learn her name is Dr. Jones - starts to speak.

“On behalf of the team, I’m honored to accept the Greene Prize, and even more honored to see

the legacy that our work has left behind. Despite its risks, the generalizability of a truly autonom-

ous molecular discovery platform has realized its promise. Many of the most pressing societal

issues are being addressed thanks to advanced materials developed through automation. New

photovoltaic cells are in development, as are CO2 capture materials. Some recent advancements

were quieter: advanced nanomaterials, leading to advanced semiconductors; 7G communications;

longer-lasting roads; small-but-significant uses for medical tools; and so on. And of course, new

drugs are being discovered, and more lives will saved.”

“Although I acknowledge the many ways that problems have been solved and lives have been

saved by chemical innovations, we need to also acknowledge the risks. The truth of every technology

we make is that we have no idea how it will a”ect the world. The internet connected the world,

but also transformed it in harmful ways. Cars opened up freedom and accessibility to millions,

but also contributed to climate change and caused many thousands of accidental deaths per year.

Now, similarly, I could not say beyond a doubt that autonomous labs won’t be used by threat

actors, or couldn’t be used to make some truly abhorrent chemical-based weapons, or some other

thing that we can’t even imagine. And we can’t rely on financial incentives alone to prevent

these threats; sure, there is push to produce things that consumers want, like renewable energy,

sustainable materials, life-improving drugs. But there’s massive government funding in weaponry

as well.”

“On the whole, I do believe that people in general want to use technology for good. Govern-

ments also don’t want people to use dangerous technologies, and will try to prevent technological

misuse too. Although we live in a chaotic and unknowable world, I believe that people will want

to fight against misuse and band together to face the risks.”

“As we are in a society that is driven by technological development, and as such technologies

now exist and will continue to be developed, it is our duty to choose to be the ones that use these
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tools for good.”

“Finally, from a pragmatic sense, it’s also much harder to use these tools for harm, because

they by nature are destructive in their test cycle - explosives will detonate during test cycles.

Biochemical weapons can’t be tested as easily as curatives. It is far easier to build safeguards

against those weapons than to build those weapons explicitly.”

Dr. Jones pauses, then continues.

“Before this speech, many of you might never have thought before about what AI looks like

in chemistry. Maybe you’ve just thought about text or image or video generation or self-driving

cars. My hope to you is that when you step away today, you’ll start thinking about the staggering

untapped potential of chemistry. What else could we develop? Where else can AI go? Could we

broadly cure neurodegenerative diseases and eliminate cancer, reverse aging, or perhaps prevent

death itself? What should we work towards as a civilization, with all of our progress and tech-

nology? I don’t know the answers, but I am hopeful that our best shot is through combining our

collective human knowledge via computation.”

“We must work together as humankind and devote ourselves to the betterment of life. Together,

let us make chemicals for peace.”
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